Design of Catalysts and Electrocatalysts: From DFT Prediction to Experimental Verification

Jingguang Chen

Columbia University & BNL Email: jgchen@columbia.edu

CFN Workshop, Nov. 5, 2014

Development of Novel Catalysts

- Supported catalysts:
 - More relevant to commercial catalysts and processes
 - Fast (high throughput) evaluation
 - "Heterogeneous" in electronic and catalytic properties
- Single crystal surfaces:
 - Atomic level understanding from experiments and theory
 - Materials gap: single crystal vs. polycrystalline materials
 - Pressure gap: ultrahigh vacuum (UHV: ~10⁻¹² psi)
- Need to bridge "materials gap" and "pressure gap"

From DFT Prediction to Experimental Verification

Use DFT to assist catalysts design: (activity, selectivity, stability, cost):

- Binding energy calculations (activity, stability)
- Activation barriers and reaction network (selectivity)

Outline of Presentation

Examples of DFT prediction and experimental verification:

- Correlating hydrogen binding energy (HBE) with water electrolysis activity
- Correlating hydrogen binding energy (HBE) with hydrogenation activity
- Correlating activation barrier with hydrogenation selectivity

Correlating HBE with Water Electrolysis Activity

Esposito, Hunt & Chen, Angew. Chem. Int. Ed. 49 (2010) 9859

HER Activity and Hydrogen Binding Energy (HBE)

• Classic volcano curve observed for the HER is explained by Sabatier's Principle $H^+ + e^- + * \rightarrow H^*$ (Volmer Step) $2H^* \rightarrow H_{2(a)} + 2*$ (Tafel Step)

[1] Data from: Norskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming, J.Electrochem. Soc., 152 (2005) J23-26.

Reduce Pt Loading with Monolayer (ML) Pt

Goal: Supporting ML Pt on Pt-like substrates, such as WC

DFT Prediction: Similar HBE Values between Monolayer Pt-WC and Bulk Pt

d-band density of states

Surface	HBE (eV)
WC(001)	-0.99
Pt(111)	-0.46
1 ML Pt-WC(001)	-0.43

DFT-calculated per-atom hydrogen binding energy (HBE) for WC, Pt, and 1 ML Pt-WC surfaces with a hydrogen coverage of 1/9 ML.

Experimental Verification of Activity and Stability

HER Activity of 1 ML Pt/WC approaches to that of Pt foil

Esposito, Hunt, Birmire & Chen, Angew. Chem. Int. Ed. 49 (2010) 9859

DFT Prediction of Stability of Pt/WC and Pt/C

• Use DFT to compare adhesion of Pt atoms to WC and Pt surfaces:

ML surface atoms	Substrate	Binding energy / eV	(M-X^) - (M-M) BE / eV
	Pt(111)	-5.43	0.00
Pt	C(0001)	-4.12	1.31
Pί	WC(0001)	-6.59	-1.16
	$W_2C(0001)$	-6.51	-1.08

Experimental Verification of HER Stability

- No change in overpotential observed with time
- No change in LSV before and after CP
- XPS and SEM measurements confirmed stability

Esposito, Hunt & Chen, J. Am. Chem. Soc. 134 (2012) 3025

Other ML/TMC Electrocatalysts for HER in Acid

Volcano relationship provides design principles of electrocatalysts

Kimmel , Yang & Chen, *J. Catalysis, 312 (2014) 216*

HER Catalysts in Alkaline Environment

Volcano relationship also appears to hold in alkaline electrolyte

Sheng et al. *Energy & Env. Sci.* 6 (2013) 1509

Outline of Presentation

Examples of DFT prediction and experimental verification:

- Correlating hydrogen binding energy (HBE) with water electrolysis activity
- Correlating hydrogen binding energy (HBE) with hydrogenation activity
- Correlating activation barrier with hydrogenation selectivity

Monolayer Bimetallic Surfaces

Surface Alloy

Surface Monolayer

Subsurface Monolayer

Modified surface chemical properties due to:

- –Ligand effect electronic configuration
- -Compressive and tensile strain lattice mismatch

DFT Prediction of HBE Values

Hydrogen binding energy (HBE) can be controlled by surface structures Kitchin, Norskov, Barteau & Chen, *Phys. Rev. Lett.* 93 (2004) 156801 Murillo, Goda & Chen, *J. Am. Chem. Soc.* 129 (2007) 7101

Controlling Hydrogenation Activity: Correlating with Binding Energy

Low-Temperature Cyclohexene Hydrogenation:

Assumption for Higher Hydrogenation Activity:

- Weakly bonded H atoms
- Weakly bonded cyclohexene

DFT Calculations of Binding Energies of Hydrogen and Cyclohexene

BE values follow the same trend: Ni-Pt(111) > Ni ~ Pt > Pt-Ni-Pt(111)

Low-Temperature Hydrogenation of Cyclohexene Due to Weakly Bonded H

$$\bigcap_{\substack{+H\\M}} + \bigoplus_{\substack{M}}$$

- Weakly bonded M-H leads to low-T hydrogenation

Binding Energies Correlate with Cyclohexene Hydrogenation Activity

Sabatier's principle: not too strong, not too weak!

Volcano relationship allows prediction of hydrogenation activity

DFT Prediction of Stable Bimetallic Structures

General Stability includes:

- □Admetals 3d, 4d, 5d
- □Host metals Ni, Pd, Pt

Ti	>	Cr	Mn	Fe	C	Ni
Zr	Nb	Мо	Тс	Ru	Rh	Pd
Hf	Та	W	Re	Os	Ir	Pt

Menning & Chen,

J. Chem. Phys, 130 (2009) 174709

Experimental Verification of Bimetallic Structures

Coordination Number	10% H ₂ at 50	0°C—NiPt/C	• Pt
Number	Experimental	Simulation	• Ni
Pt-Pt	1.9 ± 0.8	2.696 ± 0.003	
Pt-Ni	3.5 ± 0.4	3.904 ± 0.007	
Coordination	10% H ₂ at 225 °C—NiPt/C		
Number	Experimental	Simulation	
Pt-Pt	2.0 ± 0.7	2.675 ± 0.005	
Pt-Ni	3.8 ± 0.3	4.148 ± 0.008	
Coordination Number	APR at 225 °C—NiPt/C		
Number	Experimental	Simulation	
Pt-Pt	6.0 ± 1.4	4.429 ± 0.006	
Pt-Ni	1.9 ± 0.8	2.24 ± 0.03	

Tupy, Karim, Vlachos, Chen, ACS Catalysis, 2 (2012) 2290

Outline of Presentation

Examples of DFT prediction and experimental verification:

- Correlating hydrogen binding energy (HBE) with water electrolysis activity
- Correlating hydrogen binding energy (HBE) with hydrogenation activity
- Correlating activation barrier with hydrogenation selectivity

Selective Hydrogenation Requires More Complicated DFT Calculations

Activation barriers on Pd(111) surface (eV):

$$C_4H_6 \xrightarrow{+H \ 1.04} C_4H_7 \xrightarrow{+H \ 0.92} C_4H_8 \xrightarrow{+H \ 1.01} C_4H_9 \xrightarrow{+H \ 0.87} C_4H_{10}$$

Activation barriers on PdNiPd(111) surface (eV):

$$C_4H_6 \xrightarrow{+H \ 0.68} C_4H_7 \xrightarrow{+H \ 0.88} C_4H_8 \xrightarrow{+H \ 0.88} C_4H_9 \xrightarrow{+H \ 0.80} C_4H_{10}$$

The activation barriers are generally lower on PdNiPd(111) than on Pd(111), leading to higher hydrogenation activity on PdNiPd(111)

Predicting Selectivity Requires DFT Calculations of Reaction Network

Surfac	e	Pd(111)	PdNiPd(111)
d-band cent	er (eV)	-1.90	-2.25
Binding energy (kcal/mol)	C_4H_6	-34.47	-19.19
	C_4H_7	-37.27	-13.48
	C_4H_8	-12.68	-2.90
	C_4H_9	-36.54	-29.67
	C_4H_{10}	-2.61	-2.54

Binding energy of butene is weaker on PdNiPd(111), leading to higher selectivity for butene production on PdNiPd(111)

Experimental Verification on Model Surfaces

Stable bimetallic structure under hydrogenation conditions

PdNiPd bimetallic structure is very active for 1,3-butadiene hydrogenation, and may also be selective for 1-butene production

Batch Reactor: Hydrogenation Activity

Activity trend: PdNi > Pd >> Ni

Flow Reactor: Hydrogenation Selectivity

Selectivities in flow reactor at conversions of (a) 10% (b) 60% $H_2:C_4H_6 = 2.2:1$ Total Flow Rate: 9.6 ml/min

PdNi shows higher 1-butene selectivity than Pd, and higher yield in producing 1-butene

Hou, Porosoff, Chen & Wang, J. Catalysis, 316 (2014) 1

Conclusions

- Bimetallic and carbide catalysts offer the advantages of reduced cost and enhanced activity, selectivity and stability
- Combined theory, surface science, and catalytic studies are critical in design of novel catalytic materials

Review: Yu, Porosoff & Chen, "Review of Pt-based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts", *Chemical Reviews*, 112 (2012) 5780